Natural Hematite as a Low-Cost and Earth-Abundant Cathode Material for Performance Improvement of Microbial Fuel Cells

نویسندگان

  • Guiping Ren
  • Hongrui Ding
  • Yan Li
چکیده

Developing cheap electrocatalysts for cathodic oxygen reduction in neutral medium is a key factor for practical applications of microbial fuel cells (MFCs). Natural hematite was investigated as a low-cost cathode to improve the performance of microbial fuel cells (MFCs). With hematite-coated cathode, the cell current density stabilized at 330.66 ± 3.1 mA·m−2 (with a 1000 Ω load) over 10 days under near-neutral conditions. The maximum power density of MFC with hematite cathode reached to 144.4 ± 7.5 mW·m−2, which was 2.2 times that of with graphite cathode (64.8 ± 5.2 mW·m−2). X-ray diffraction (XRD), Raman, electrode potential analysis, and cyclic voltammetry (CV) revealed that hematite maintained the electrode activities due to the stable existence of Fe(II)/Fe(III) in mineral structure. Electrochemical impedance spectroscopy (EIS) results indicated that the cathodic electron transfer dynamics was significantly improved by using hematite to lower the cathodic overpotential. Therefore, this low-cost and earth-abundant natural mineral is promised as an effective cathode material with potential large-field applications of MFCs in future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Electrolyte Conductivity and Aeration on Performance of Sediment Microbial Fuel Cell

Sediment microbial fuel cells (SMFCs) are a promising technology for a viable source of energy. This technology is faced with many challenges, such as limited mass transfer and low electricity generation. The aim of this research was to investigate the effect of electrolyte conductivity and aeration effect on power generation from SMFCs. Electrical conductivity was adjusted at 6different levels...

متن کامل

Application of dual chamber microbial fuel cell with aeration cathode for bioelectricity generation and simultaneous industrial wastewater treatment

Background and Objective: Microbial fuel cell (MFC) is a new green technology that uses the catabolic ability of microorganisms to produce bioenergy while simultaneously removing organic matter and other wastewater contaminants. Electrode material is one of the factors affecting the performance of microbial fuel cells. The aim of this study was to investigate the performance of microbial fuel c...

متن کامل

Enhanced Performance for Treatment of Cr (VI)-Containing Wastewater by Microbial Fuel Cells with Natural Pyrrhotite-Coated Cathode

Here we reported the investigation of enhanced performance for the removal of hexavalent chromium (Cr (VI)) by a new microbial fuel cell (MFC) with natural pyrrhotite-coated cathode. By comparisons of the graphite-cathode, the MFCs equipped with a pyrrhotite-coated cathode generated the maximum power density of 45.4 mW·m−2 that was 1.3 times higher than that of with bare graphite cathode (35.5 ...

متن کامل

A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material

In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C  synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...

متن کامل

None-platinum electrode catalysts and membranes for highly efficient and inexpensive H2 production in microbial electrolysis cells (MECs): A review

Microbial electrolysis cell (MEC) is a gripping bio-electrochemical device producing H2 gas from renewable biomass while at the same time treat wastewater.  Through extensive global research efforts in the latest decade, the performance of MECs, including energy efficiency, hydrogen production rate (HPR), and hydrogen recovery have achieved significant breakthroughs. However, employi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016